Role of molecular charge in disruption of the blood-brain barrier during acute hypertension.
نویسندگان
چکیده
Acute hypertension disrupts the blood-brain barrier and may neutralize the negative charge on cerebral endothelium. The goal of this study was to determine the effects of molecular charge on permeability of the blood-brain barrier during acute hypertension. Intravital fluorescent microscopy and fluorescein-labeled dextrans were used to evaluate disruption of the blood-brain barrier during acute hypertension in rats. Disruption of the blood-brain barrier was quantitated by calculating clearance of neutral dextran and of anionic dextran sulfate in two groups of rats. Pressure in pial venules, which are the primary site of disruption of the blood-brain barrier during acute hypertension, was measured using a servo-null device. When systemic arterial pressure was increased from 87 +/- 5 (mean +/- SEM) to 188 +/- 5 mm Hg, clearance of neutral dextran increased from 0.04 +/- 0.01 to 4.38 +/- 0.72 ml/sec x 10(-6). When systemic arterial pressure was increased from 91 +/- 4 to 181 +/- 3 mm Hg, clearance of anionic dextran sulfate increased from 0.02 +/- 0.01 to only 0.70 +/- 0.23 ml/sec x 10(-6). Increases in pial venular pressure were similar in the two groups. Thus, similar increases in systemic arterial pressure and pial venular pressure during acute hypertension produce less disruption of the blood-brain barrier to anionic dextran sulfate than neutral dextran. The findings suggest that 1) the net negative charge of cerebral vessels may be preserved during acute hypertension, and 2) molecular charge is an important determinant of the severity of disruption of the blood-brain barrier during acute hypertension.
منابع مشابه
Contribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats
Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...
متن کاملCandesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats
Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...
متن کاملIntensification of brain injury and blood-brain barrier permeability by short-term hypertension in experimental model of brain ischemia/reperfusion
Introduction: Arterial hypertension is one of the causes of stroke, and as one of the vasculotoxic conditions intensifies ischemic stroke complications. The aim of the present study was to analyze the effects of short-term cerebral hypertension on ischemia/reperfusion injury and pathogenesis of ischemic stroke. Methods: The experiments were performed on three groups of rats (N=36) Sham, cont...
متن کاملP 136: The Role of Blood Brain Barrier in Multiple Sclerosis
Multiple sclerosis (MS) is an inflammatory disorder, in which neurons become demyelinated. To date, its etiology has remained unknown. Nevertheless, certain features are inspected to provoke MS. For instance, improper function of immune cells is widely believed to be the basis of such disorder. In this concept, MS is stated as an autoimmune disease, which was asserted by major of studies, as CD...
متن کاملThe blood-brain barrier in renovascular hypertension.
Cerebral vessels of the spontaneously hypertensive rat (SHR) are less susceptible to disruption of the blood-brain barrier to proteins during acute hypertension than normotensive controls. This protective adaptation in SHR during acute hypertension is thought to be due to cerebral vascular hypertrophy which leads to increased vascular resistance and attenuation of the increase in cerebral blood...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 64 4 شماره
صفحات -
تاریخ انتشار 1989